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Inferencia Estadistica. Examen [

Ejercicio 1 (1.9 puntos). Sea X una variable aleatoria con funcién de densidad:
T

VI— Ve =1

se pide calcular, si existe, un UMVUE para la funcién paramétrica g(6) = (§ — 1)
y justificar detalladamente la no existencia del mismo cuando no exista.

fo(z) = 1<a:<\/§

-1
)

Ejercicio 2 (2 puntos). Sea X una variable aleatoria con distribucién en la familia
{Py : 6 € ©} que se sabe que es regular y cuyas funciones de densidad vienen dadas
por:

fo(z) = explky In O — koxf + S(x)], x>0, 0 k,kyeR"
sabiendo que Varg(X) = (Eg[X])*.

a) (Para qué valores de n se puede asegurar que cualquier estimador regular
insesgado en g(#) = In6? tiene varianza mayor o igual que 0,2 para cualquier
valor del parametro 67

b) Paran =1, si U(X) es un estimador insesgado de g(6) = In 62 regular, se pide
calcular la covarianza de U(X) y de X.

c) ;Para qué valores de k; y ko existen funciones paramétricas con estimadores
eficientes?

Ejercicio 3 (1.85 puntos). Sea (Xj,...,X,) una muestra aleatoria simple de una
variable X ~ {P:0 e R} y S = 5(Xy,...,X,) un estimador de 6:

a) Si S — 0~ N(0,02) V6 € R. Partiendo de la funcién de verosimilitud de 6
asociada a una realizacion de S, calcular la funcién de verosimilitud asociada a
la funcién A = 6% — 1 y deducir a partir de ella el estimador méximo verosimil
de \.

b) SiS—60 ~t(n) VO € R. Encontrar el intervalo de confianza para 6 de minima
longitud esperada a nivel de confianza 1 — o basado en S.

Ejercicio 4 (2 puntos). Sea X una variable aleatoria con funcién de densidad

3z —1)°
se pide obtener el test mas potente de tamano « que permita resolver el contraste
Holezeo, H,:0=06, dOIld681<(90.

Calcule la potencia de cada test. Paran =2y 6y, = 9, obtener el mayor valor de 6,
para que la potencia del test de Neyman-Pearson de tamano 0,01 sea mayor o igual
que 0,64.
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Ejercicio 5 (1.25 puntos). Si se tiene un modelo lineal de Gauss-Markov Y =
Xp+e:

a) Si el modelo es de rango maximo, dar el estimador de minimos cuadrados de
[ v calcular la media del vector de residuos del modelo estimado, solo con las
condiciones iniciales del modelo.

b) Definir el concepto de funcién estimable y enunciar el Teorema de Gauss-
Markov.

¢) Describir la hipétesis lineal general y bajo hipétesis de normalidad, dar el test
de razon de verosimilitudes de tamano o que permite resolver el contraste,
especificando detalladamente el estadistico de contraste.

Ejercicio 6 (1 punto). Se ha medido el nimero de particulas de 100 muestras radio-
activas en un intervalo de tiempo prefijado e igual a todas las muestras, obteniendo
los siguientes datos:

Numero de particulas ‘ o 1 2 3
Numero de muestras ‘29 25 20 14

4 5 6
8 3 1

Se pretende contrastar a nivel de significacién 0,05 si la distribucién de los datos se
corresponde con la de una Poisson.
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Solucion.

Ejercicio 1 (1.9 puntos). Sea X una variable aleatoria con funcién de densidad:
x

N W

se pide calcular, si existe, un UMVUE para la funcién paramétrica g(6) = (6 — 1)_1
y justificar detalladamente la no existencia del mismo cuando no exista.

Jo(x) = 1<x<\/§

Buscamos obtener el UMVUE mediante el método alternativo visto en teoria.

Para ello, en primer lugar hay que encontrar un estadistico suficiente y comple-
to T, y luego una funcién del estadistico h(7T') (denotaremos indistintamente T =

T(Xy,...,X,), para una m.a.s. (Xi,...,X,) con n € N fijo) insesgada en g(0) =
(0 —1)7!, estimadora y con momento de segundo orden finito. Entonces h(T') serd

el UMVUE.

El estadistico suficiente se calcula por medio del Teorema de Factorizacion de
Neyman-Fisher. La funcién conjunta es la siguiente

n

f@n o xn) "E T o)

=1

Suponemos en este punto que x(;y > 1 (de lo contrario, fy(z;) =0 Vi=1,...,n),
y vemos que

SVO Vi=1,....n < I (2;=V0) =1 Vi=1,....n < L (zm-V0) =1

de donde se deduce que

fen(xl, R \/5) ilﬁ(n)—\/é)

H\/QT/—J;_ gln/QH /—I_

Tomando T'(X,..., X,) = Xy v
n 7 .
h(z1, ..., zn) :H\/ﬁ’ ge(t) = (0 —1) /ZIRg(t_\/a)

Se cumple que

fo(xy, .o xn) = h(xy, ..o x0)g0(T (21, ..y 2n)) V(21,...,2,) € X"

donde h es independiente del parametro 6 y gy depende de la muestra solo a través del
estadistico, luego, por el Teorema de Factorizacion de Neyman-Fisher, el estadistico
T es suficiente.
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Ahora, hay que comprobar que este estadistico es completo, lo cual se hard por
definicion. Sabemos por teoria que la distribucion del maximo es

Fr(t) = (Fx(t)" = fr(t) = n(Fx(t))"" fo(t)

Hallamos ahora la funcién de distribucion de X:
t t T 1 t T 1 t
Fx(t) = dr = dr = dr = ——-|V2z2 - 1| =
x() /1f9<x) v /1 SV =1 \/9—1/1 V-1 Va-1 [ ’ ]1
2 —1
Vo —1
La funcién de densidad del estadistico sera entonces
\/tZTl) el t

t)=n(Fx(t)" " fo(t) =n | —— =
WESD owt (BT

Vo—1)1Ve—1ve2—1  (Vo—1)"

Sea h una funcién medible verificando

0 =E[n(T)] < /1 . h(t) fr(t)dt = /1 7 h(t)nt(( oD,

1<t<Vo

1<t< Vo

n Ve
m/1 h(t)t(Vt2 — 1) 2dt

COMO — e #0 VneN, VO>1,debe ser

NG,
/ h()t(Vt2 — 1) 2dt =0

Por el Teorema Fundamental del Célculo, podemos considerar una primitiva H (t) del
integrando h(t)t(v/t2 — 1)"~2, y esta cumple, por la Regla de Barrow, que H(v/8) —
H(1) =0 V6 > 1. Derivando respecto de 6, se obtiene que

d neo 1 . 0>1
GH(V0) =0 = h(VOVIVI-T) N AR

VBT =0 <5 h(vE) =0
donde en (%) se ha usado que (/0 — 1)""2/2 # 0 por ser 6 > 1. Equivalentemente,
Ve © =]1,400[ h(VO) =0 < h(t)=0 Vt>1
(tomando ¢ = v/ € |1, +oc). Por tanto
11, 400[ C {t: h(t) =0}
y consecuentemente
1>Ph(T)=01>2PT>1=1= P[MT)=0]=1

y entonces por definicién concluimos que 7T es un estadistico completo. Tenemos
entonces en este punto que 7" es un estadistico suficiente y completo.

7
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Ahora hay que buscar un estimador insesgado en g(f) y de segundo orden finito.
Sea h (independiente de la anterior) funcién medible tal que

" Ve
(0 —1)""=g(0) =E[n(T)] = Wfl h(OL(VE2 — 1) 2dt <=

(\/ﬁ)n (9 _ 1>71 _ (0 — 1)%_1

n n

NG
/ h(t)t(Vi2 — 1)"2dt =

Derivamos respecto de 6 a ambos lados e igualamos. El miembro izquierdo ya lo
tenemos por el apartado anterior:

SVB)(WE 1)

y el derecho es
1 /n n 1 1 n n—2 n
(=21 ) 2=(Z_-=Z —1)22 = —1)z72
TG e-vi= (G- om0 =20

Despejamos h(v/8):

N

1

SHVOE T ="

2n

0—-1)>72 =

n (v —1)r2 n (0-1)0n=22 " pn §-1

n—2 1
M=
Por construccién h(T') es insesgada en ¢(#). Vemos que h(T") también es estimador
de g(6), pues © = |1, 4o00[, y g(0) = ﬁ = ¢(0) =10, +oo[. Como T = X,y > 1,
entonces T2 —1 >0, y ”7_2 > 0sin > 3, luego h(T) > 0 si n > 3. Queda comprobar
que tiene momento de segundo orden finito.

h(\/é):n—2 @—-1)z2 n-2 (-1)322% n-2 1

Ello se cumplird en caso de que E[h(T)?] < +oo:

ey [ b2 eyt = / v (” = 2>2 <t2i1>2 ST e

n— 92)2 Vo n— 92)2
(=2 /1 t(t? = 1) = nge — 12))”/2 & L o - 1)n=4/2)Y?

(n—2)2%—-1)r92 (n-22 1

nn—4) @—1"2  nn—4) (0-1)7
Y vemos que E[h(T)?] < +00 <= n > 4, yaquesin < 4, el momento de segun-
do orden no es finito. Por tanto, por el Teorema de Lehmann-Schefté, E[h(T)/T] =
h(T) es el UMVUE para g(0), y existe siempre y cuando n > 4 <= n > 5.
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Ejercicio 2 (2 puntos). Sea X una variable aleatoria con distribucién en la familia
{Py : 6 € ©} que se sabe que es regular y cuyas funciones de densidad vienen dadas
por:

fo(z) = explky In O — koxf + S(x)], x>0, 0k, kycR"
sabiendo que Varg(X) = (Ey[X]).
a) (Para qué valores de n se puede asegurar que cualquier estimador regular in-

sesgado en ¢g(f) = In6? tiene varianza mayor o igual que 0,2 para cualquier
valor del parametro 67

Nos piden calcular la cota de Frechét-Cramer-Rao, definida para cualquier
estimador regular, insesgado en g(6) y, suponemos, de segundo orden, 7', como

sigue:
lg' ()"
Var(T(Xy, ..., X)) = —
( ( ' )) IXI ----- X'n(e)
donde 0 < Ix(f) < +00. Ya tenemos el numerador
2 / 2 / 2 4
9(6) =In(6%) =20 = ¢'(0) = ; = [d(O)]" = 3

Y por la aditividad de la funciéon de informacién de Fisher, sabemos que
Ix,  x,(0) =nlx(f). Sacamos Ix(0).

Lyeeey

Para usar la condicion de regularidad, se obtiene

lnfg(x) =k Inf — kox + S(gj) _ M%Z(X) — % — kox

Usando que la familia es regular

1 X
B, Ol fy(X) :0<:>Eeﬁ—/f2X ZO@Eeﬁ—Ee[kzX]ZO‘:’
06 0 0
ko _
g —szQ[X] < E@[X] - er

Sabemos por teoria que

dln fo(X
[X(Q) = Varg |:—Il§2( ):|
y
dln fo(X k %) (+%) ki \ 2 kys0 K2
Vo [ 2200 | varg | 0~ kx| 2 varlx] 2 (eX) = 8 (1) 25

donde en (x) se ha usado que Var(aX + b) = a*Var(X) para todo a,b € R, y
en () que Vary(X) = (E¢[X])* por hipétesis del enunciado.

Tenemos que 0 < Ix(f) = ki/e> < +oo, y la minima varianza es entonces,

sabiendo que Ix, . x,(0) = nlx(0), la que sigue:

77777

9
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'O _gOF 4 6 o0 4
I, x,0) nlx(0) 62nk? nk?

Imponemos que esta cota inferior sea mayor o igual que 0.2, y despejamos n:

>02 < n< —0 =
TS0 TR

2
nk;

Asi, para todo n € N con n < 29/k2, podemos asegurar que la varianza de
cualquier estimador regular insesgado en g() = In6? serd mayor o igual que
0,2 para cualquier valor del parametro 6.

b) Paran =1, si U(X) es un estimador insesgado de g(6) = In 6% regular, se pide
calcular la covarianza de U(X) y de X.

Por ser U(X) insesgado en g(f), se tiene que
Ey[U(X)] = () = In(6*) = 2In 6
Por ser U(X) regular, sabemos que se verifica la siguiente condicion:

9 Ol f(Xy,..., X,
%EG[U(X1,~-7Xn)]:E0 [U(Xl"“’X”) nf0(819 )]

en particular paran =1

9 B O fy(X)
S ElU00)] = B [0 2]

Podemos obtener el miembro izquierdo de la igualdad

0 0 2
%Ee[U(X)] = 5g2In0) =7

y el miembro derecho, usando lo ya calculado en el apartado anterior, es

E, {U(X)M} — Ey [U(X) <@ - @Xﬂ = @EQ[U(X)]—/@EQ[U(X)X]

06 7 7
Juntando ambas cosas, podemos despejar el momento cruzado Ey[U(X)X]:
2k
>k L AU
2 = Mgy U (X))~ RRU(X)X] = EfU(x)X] = &0~ "2 =
— R
2 ky
— = L LRUX

prREICIS)

Ahora, por definicién de covarianza
Covy(U(X), X) = Eo[U(X)X] — Eo[U(X)]Eg[X]
y sustituyendo y usando E4[X] obtenida en el apartado anterior:

CovU(X), X) = =5+ S BalU (0] ~ BalU (L5 =~
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c) (Para qué valores de k; y ko existen funciones paramétricas con estimadores
eficientes?

Buscamos aplicar el Teorema de Caracterizacién de Estimadores Eficientes.
Para ello, obtenemos la funciéon conjunta de la m.a.s. de X

n

fi@r o x) SN falw)

i=1
Se supondré a partir de ahora que z; € Rt Vi =1,...,ny 6 € R". De lo
contrario, fp(z;) =0 Vi=1,... n.

n

n

n indep k1 ln0—kox;0+S(z; " (k1lnO—koz;0+S(z;
f(,(m,...,xn) = er(xi):He(l 2 (@) = g2z (kn 2 (@) —
i=1 =1

ek In0—k20 37, ok I, S(=) exp {nk1 Inf — ko0 Z x; + Z S(Sﬁz)}

i=1 i=1

lnfg(xlw .. 7xn) - nkllne - ]{?2021’1 + ZS((L’z)
=1 =1

Oln fi(z1,...,x,) nky & = nk;
— _k = —k L
20 o le : le kol

Ahora, supongamos que T'(X7y,...,X,) es un estimador de ¢g(f) funcién pa-
ramétrica derivable y estrictamente mondtona (¢'(d) # 0 VO € © = RT).
Como el enunciado nos dice que la familia es regular, y 0 < Ix(0) = *i/o2 <
+oo VO € O, T es eficiente si y solo si V8 € ©  Ja(f) # 0 tal que

81HfgL(X1,,Xn)

P
b o0

— aO)T(Xs. ., X,) — g<e>]] 1

00
e (0= arx, X — g00)
P k20 ) )
claramente por comparacion se obtiene que
T(X X)—zn:X- (9)—n—k1 a(f) = —k
1y+--yn _i_l ) g _k29a 2

11
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Es claro que T(X7, ..., X,,) = > .~ X; es un estimador, pues © = RT, ¢(0) =
Rty T(zy,...,2) >0 Y(z1,...,2,) € X" = (RT)". Ademds, tanto a(6)
como ¢(#) verifican todas las condiciones del teorema, pues

nk:l

__k202 <0

JO)=—— (07" =——-(-07%) =
porque n, ky, ko, 0 > 0y a() = —ko < 0, en particular, a(f) #0 V0 € O,y
usando la aditividad de la funcién de informacién de Fisher, obtenemos

2
’I’Lkl k2_>0 nkl

ki !
nﬁ =nlx(f) = Iix,,.x)(0) = a(0)g'(0) = —k (_W> 0

Para que coincidan, necesariamente

2
n%:%—]zl YRR —ky == k€ {0,1}

Sin embargo como el enunciado del problema nos dice que k1 € R* (ademds de
que para que T sea eficiente, debe ser 0 < Ix(6) = /92 < +o00 por definicidn,
por lo que también se descarta por esta via que k; = 0), debe ser k; = 1.
Por un corolario visto en teoria, como 7'(X7,...,X,) es un estimador eficien-
te para g(6), con ¢'(0) # 0, sabemos que las tinicas funciones paramétricas
que admiten estimadores eficientes son las de la forma ag(#) + b y los corres-
pondientes estimadores eficientes son a7’ + b, con probabilidad 1, bajo todas
las distribuciones de la familia. Ademas, estos estimadores eficientes existen
tnicamente en el caso en que (ki, ko) € {1} x RT.

12
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Ejercicio 3 (1.85 puntos). Sea (Xi,...,X,) una muestra aleatoria simple de una
variable X ~» {Fp: 0 e R} y S = S(Xy,...,X,) un estimador de 6:

a) Si S — 60~ N(0,062) V6 € R. Partiendo de la funcién de verosimilitud de 6
asociada a una realizacion de S, calcular la funcién de verosimilitud asociada a
la funcién A = 6% — 1 y deducir a partir de ella el estimador méximo verosimil

de \.

Para obtener la funciéon de verosimilitud de # asociada a una realizacion de S,
pongamos s, necesitamos la funciéon de densidad de la normal, expresada en

términos de s: . (s 6)?
S —
s) = expl —
f9( ) - /_27'(' p{ 20_8 }
Ahora, por definicién, la funciéon de verosimilitud es

Ly(0) = fs(s) VoecO©=R

La funcién paramétrica que nos dan es A = 0> — 1 = g(0), y despejando 6 en
funcién de A

A=0>—-1 < =141 < 6=+VI+1

es claro que el espacio paramétrico es A = [—1, +o0[. Nuevamente por defini-
cién, la funcién de verosimilitud asociada a la funcién paramétrica A = g(6) =
02 —1es

M,\) = sup Ly(0) =méx{L,(VA+1),L(—VX+1)}

fcg=t(N)

Queremos ver si Ls(vA+ 1) > Ly(—v A+ 1) (podriamos haber tomado el otro
sentido de la desigualdad no estricta también), es decir, si Ls(v/A + 1) nos da
la funcién de verosimilitud asociada a A = g(6). Para ello, tratamos de llegar
a una condicién equivalente que sea sencilla de comprobar:

L{(VA+1) 2 L(-VA+1) <
UojﬁeXp{Js—g/f)?}200%%}){_(8—(—&—“)?} .
exp{—@} {_@} LN

2 2
20 20

(s —VA+1)? N (s+VA+1)? 98>0

202 - 202
(s—=VA+1)2<(s+VA+1)? <=
P —2VA+ 1 +A+1<S?+25VA+1+A+1 =
—23\/)\——1-1<23\/)\—+1 = 0<45\/)\—+1@0320

= exp

NN

13
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donde en (x) se ha usado que la exponencial es estrictamente creciente. Dedu-
cimos entonces que

(VA+1) sis=0

L
M(\) = }
L(—vA+1) sis<0

Ahora, hallamos el EMV por medio de las ecuaciones de verosimilitud, que
dependeran del caso en que nos encontremos.

a) Sis >0, entonces Mg(A\) = Ls(v/ A+ 1) y maximizamos
1 —VA+1)?
) = vARDE

In M,()\) = In (

ooV 21 202
In M(A 1 1 —VA+1
an—8(>:__22(5_\/)\+1)<_ >:S +
oA 20§ 2vA+1 202V + 1
y
0ln My(N) s—vVA+1
— =0 = —F——=0 &= s—VA+1=0 <= s=VA+1 <=
O 202/ § 1 ’ ’
A=s2—1

b) Sis <0, entonces M(A) = Ly(—v A+ 1) y maximizamos
1 A+ 1)2
) s+ VA4 .

In M,()\) = In (

ooV 2T 20(2)
8lnM5()\):_i22<8+\/)\—+1>( 1 ):S+\/)\+1
O\ 20§ 2vVA+1 208V + 1
y
O01ln My(N) s+vVA+1

=0 <— =0 <= s+VA+1=0 <= s=—VA+1 <

2 202V + 1
|| = _s=VAtl =

A=s>—1

En resumen, el estimador maximo verosimil de A es A= 82— 1, para todo
A€ AN=[-1,+o0[.

14
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b) Si S—6 ~-t(n) V6O € R. Encontrar el intervalo de confianza para 6 de minima
longitud esperada a nivel de confianza 1 — a basado en S.

Como S — 6 ~ t(n) V6 € R, podemos considerar como funcién pivote, T :
X" x © — R, dado por

T=T(Xq,...,X;0)=5(Xq,...,X,)—0=5—-10

que es una variable aleatoria cuya distribucién, ¢(n), es independiente del
pardmetro € (solo depende de n € N). Ademés:

a) T es estrictamente monétona en 6, pues

or o
%_%(5—9)——1<0, Voe ©=R
b) T = X tiene solucién en 6, para todo A € A = R, con A la imagen de T,
pues

T=\N < S—0=\ = 0=5S—-)2eR

Por un teorema visto en teoria, sabemos que se puede construir un intervalo
de confianza para 6 a cualquier nivel de confianza 1 — «, con 0 < o < 1. Por
el método de la cantidad pivotal, buscamos \; < Ay verificando

Pg()\1<T</\2>:1—Oé
Es decir,
M<T <A <= M <S0< ) << M-S<-0< 85 << S—A<l<S-)\

y el intervalo tendrd longitud L = (S — A1) — (S — X2) = Ay — A1, que es
constante, luego coincidird con la longitud esperada Ey[L] = L V6 € ©.

Sea ahora F' la funcion de distribucion de la distribucién ¢ de Student ¢(n), y
sea f la correspondiente funcion de densidad. La restriccion es

1—(1/:P9()\1<T<)\2):F()\2)—F()\1)

Minimizamos A, — A; con el método de los multiplicadores de Lagrange visto
en teoria

];.’(/\17 /\2) = /\2 — /\1 — /\[F()\Q) — F()\l) — (]_ — O./)]

y buscamos aquellos A, A2 que minimicen H (A1, A2), luego obtenemos sus de-
rivadas parciales

OH OH
- 1 e [
S = LMD G =100
Ahora, igualamos ambas parciales a 0 y despejamos A:
OH 1
0=—=—-14+Af(A A=
on A o)
. = . = f(M) = f(A2)
0=—=1-Af(A A= ——
8)\2 f( 2) f(>\2)

15



Inferencia Estadistica. Examen [

Como la distribucién ¢ de Student tiene las mismas propiedades de simetria con
respecto al origen que la AV(0, 1), las tinicas posibilidades son o bien \; = A o
bien A\; = —\,. La primera de las dos opciones se descarta ya que no verifica
la restriccion (F'(Ag) — F(A) = 0 # 1 —«), por lo que tiene que ser A\; = —\s.
Teniendo nuevamente en cuenta la restricciéon F'(Ag) — F'(A1) = 1 — «, estos
quedan determinados por:

A2 = tpiasz, A ==X = —tpap

siendo P[T > t.ap) = a/2y T ~» t(n). En conclusién, el intervalo de confianza
para 6 de minima longitud esperada a nivel de confianza 1 — o basado en S
es:

]S - >\275 - )\l[ = j|S - tn;0/27S+tn;a/2|:
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Ejercicio 4 (2 puntos). Sea X una variable aleatoria con funcién de densidad

3z —1)°
fe(:lc):—(%e3 ), l<z<f+1

se pide obtener el test mas potente de tamano « que permita resolver el contraste
H()Z@:@(), H:0=0, dOHd€€1<90.

Calcule la potencia de cada test. Paran =2y 6y = 9, obtener el mayor valor de 6,
para que la potencia del test de Neyman-Pearson de tamano 0,01 sea mayor o igual
que 0,64.

Tenemos un contraste de hipoétesis simple frente a hipotesis simple, por lo que
sabemos por el Lema de Neyman-Pearson que el Test de Neyman-Pearson serd el
mas potente de tamano «, de la forma

1 SiAXL,. ., X)) > k
(X, ..., Xn) =<y siANXy,...,X,) =k
0 Si/\(Xl,...,Xn><k?
para ciertos v € [0,1], k € Ry
Xy, .., X,)
AXy, X)) =
. )= % X

Definimos el espacio muestral y el espacio paramétrico, en ambos casos depen-
diente del pardmetro . Si estamos en Hy, entonces Xy = |1,00+ 1[, y ©g = {6o}.
Analogamente, si estamos en Hy, entonces X; = |1,6, + 1], y ©; = {0,}. Tenemos
entonces que

@ - @0 U @1 - {90,91}

y como 0 < 0y <= 6, +1<0y+ 1, entonces |1,6, +1[ C |1,00 + 1]y
X=X UX =]1,00+1[{U]L,0, + 1[=]1,600 + 1]
Consecuentemente
XM ={(x1,...,2p) ER": 1 <a;<Op+1 Vi=1,...,n} =

{(xl,...,xn)ER”:1<x(1) N :B(n)<90—|-1}

Podemos considerar entonces (x1,...,2,) € X™, y obtener la funcién conjunta
fi(z1, ... x,), que es

fo(zy, ... @)

indep. - 3(372 — 1)2
= 03

=1

Y vemos que
r<0+1 < Ig-(z—(0+1) =1

luego

r, <O0+1 Vi=1....n < 24m) <0+1 <= Ir-(xm)—(0+1)) =1

17
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Por tanto )
fo' (21, ) Tp) = 03 Ir- (x(n) —(0+1)) =
i=1
3\" 1~ ) 3" I~ )
e [ =1l (2 — (0 + 1) = gin [ = 12 (2 — (0 + 1)
i=1 =1
Se tiene entonces que
3" 3" T
f(?(xla s 7$n) = 90% E(xi_l)QIR_ (x(n)_(eo—i_l)) = 90% E(ml_l)Q V(.ZCl, v 7xn) SR
3" T
f1n<LU1, c ’xn) = W H(Z‘Z — 1>21R—<x(n) — (91 + 1)) \V/(lj, ce ,.l’n) ex"
L oi=1
y podemos obtener A(z1,...,x,), con (z1,...,z,) € X™:
f{l(xh 71'71)
ANz, ...,x,) = =
( ! ) f(?(xh 7xn)
3" - , .
4 7 (x; —1)° sizp <6 +1
9o i — D)2 Ip-(zi — (01 + 1 =1
9§"E( Ve (2 = (01 ) 0 Si ) =01 +1
3 - 2 - 3" 1 2
QOW H($z - 1) W ]i[($Z — 1)
i=1 0 =1

Ahora, si 2, < 6y + 1, simplificamos
37’L
o7 JL =T _ 305" _ (6™
St e=T17 30 01

3n
QO

de donde

Ny, 20 iz, 1
A(xla"'axn):M: (91> Slx()<91+ V([L’l,...,JTn)GXn
U 0 SiZL'(n)ZQl—I—l

Graficamente, como 6; < 6:

| - h=0
>0 | :
S0 | 6, < 6,
| | "
0+ 1! oo+ 1
Jo>0 ]
Jo=0

18
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La semirrecta en que fo = 0, que se corresponde con la condicion z,) = 6p+1, no

nos interesa ya que (z1,...,o ) ¢ X". Graficamente, la situacién en la que estamos

es la siguiente:

A
1
<00)3n
—]
0, ;
. Xny
0, +1 0o + 1

9 3n
Tenemos que k € {O, <0_0> , luego distinguimos entre estos dos casos.
1

Si , entonces el test serd:

SSAXL, . LX) >k = Xy <0 +1

1
§0<X1,...,Xn): Y Sl)\(Xl,,X)—k<l:>X 01"‘1
0 siA(Xy,...,X,) <k nunca

es decir:

QO(Xl,---,Xn) =

I osiXpy <6 +1
v osiXpy =260 +1

Determinamos 7y imponiendo tamano a:

de
o sup B,(0) = sup Eylp(X1, ..., Xn)] = Eoyl0(X1,.... X,)] =
0cOg €06

1+ Ppy[X(n) < 01+ 1] + P [X(m) = 61 + 1]

Para calcular las probabilidades, obtenemos la funcién de distribucién Fx (t):

3 [(x—131" (t—1)3

FX(’”déf/ltg(xe—_sUth:%[“‘”2“:@[TL: w5

Sabemos por teoria que, para T' = X, la distribuciéon del mdximo verifica

P)IT < ] = Po(t) = (Fx(t)" (%)

Por lo tanto,
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de donde

0 3n 0 3n
azl'Peo[X(n)<91+1]+7P90[X(n)291+1]:<0—1> +7<1—<—1> ) =
0

y el test resultante es:

a_ —
X1, X)) = (
@( 1, ) ) 3 90 si X

con potencia (en ©; = {6, }):

(61>3n
a_ —_—
Be(01) = Eg, [p( X1, ..., X)) = P, [T < 61 + 1] +WP91[T > 6 +1]
1 (2
(90)
COIIIOP@I[T<01+1]:1yP91[T>01+1]:1—P91[T<91+1]:1—1:0,
entonces

B@(el) =1
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3
. 2N .. : .
Silk=|— el test serd, mirando nuevamente la misma gréfica

0,

A
1
<90)3n

—]

0, ;

N X(n)
6, + 1 Oy + 1

el que sigue:
1 st AM(Xy,...,X,) > k nunca

gD(Xl,...,Xn): ¥ Sl)\(Xl,,X)—k<:)>X <0 +1
SAX, ., Xp) <k = Xpy =20 +1

o

es decir:
si Xy <01 +1
(X1, X)) =14 )0
0 siXgp) =200+1

Determinamos v igual que antes imponiendo tamano «:

o™ sup B,(0) = sup Eglp(Xy, ..., X,)] = Egylp(X1, ..., X,)] =

[USISH) [ASICH

Y- Poo[Xny) < 014 1] 40 Py [X(n) = 01 + 1] = v - Py [X(n) < 01 + 1]

Ya sabemos del caso anterior que

0 3n
P@O[T < 0+ 1] = <0—1>
0

luego
a="7-Py[Xn <0 +1] =x o —
0
3n 3n
0<y= agza@ <1<:>a<ﬁ
" 01 o

0,
0o
y el test resultante es:

ol — si Xy <0 +1

gD(Xl,...,Xn> =
0 si Xy =260 +1
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con potencia (en ©; = {6,}):
3n
00 = Bnfo(Xa.c. Xl = () Pall <0011+ 0- Pl 3 6, 4+1] =

90 3n
o 9— 'Pgl[T<91+1]
1

Igual que en el caso anterior Py, [T < 6y + 1] = 1, luego

Bo(bh) = a (Z—[;)Bn

Lo ultimo que pide el ejercicio es: para n = 2 y 6y = 9, obtener el mayor valor
de 6, para que la potencia del test de Neyman-Pearson de tamano 0,01 sea mayor o
igual que 0,64. Distinguimos nuevamente entre los dos posibles valores de k:

0 3n
Si , hemos visto que el test mas potente para tamanos « > (0—1) es
0

(1 si Xn) < 61 +1
<01>3n
a_ —
(&)
\ 0o

B@(el) =1

En particular sin =2, 0 =9 y a = 0,01, imponemos

n) =01 +1

y la potencia es

0.\ [0,\° 65
0,0l =a > (9—1) = (51) = 9—; — 0 <0,01-9° =5314,41 < 6, < ¢/5314,41 ~ 4,177
0

Por tanto, como la potencia siempre es 1 (> 0,64), el mayor valor serfa simple-
mente el mayor valor que verifica la restriccion del tamano, que es 6; ~ 4,177.

‘ 80 3n ‘ ) ) 01 3n
Si|k = 0. , hemos visto que el test mas potente para tamanos a < o
1 0
es
(eo)gn i Xy <01 +1
al| — s1 X,
P(X1,. ., Xn) =40 \ 6y =
0 si X(n) = 81 +1

y la potencia es

Bo(0h) = o (Z—[i)gn

En particular sin =2, 0 =9 y a = 0,01, imponemos
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0.\ [6,\° 65
(w1=a<<f) :(§>:j%¢:>@>Qm9@:%MA1¢$QQBW%MA ~ 4,177
0

e imponemos la restriccion sobre la potencia

5314, 41 9\° 0o\ >"
Bo(6h) = 0,64 — 2 :Qm(—) :a(i) > 0,64 <
91 61 91

5314, 41
6, < {f =45
! 0,64

Combinando ambas restricciones, obtenemos

4177 < 0, < 4,5

Y concluimos entonces que el mayor valor de 0, sera 6, = 4, 5.
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Ejercicio 5 (1.25 puntos). Si se tiene un modelo lineal de Gauss-Markov Y =
Xp+e:

a)

Si el modelo es de rango maximo, dar el estimador de minimos cuadrados de
[ v calcular la media del vector de residuos del modelo estimado, solo con las
condiciones iniciales del modelo.

El estimador de minimos cuadrados del vector de efectos  es tinico (la exis-
tencia siempre esta garantizada sin necesidad de suponer que el modelo sea
de rango maximo, y la unicidad esta asegurada por ser el modelo de rango
méximo) y viene dado por

B=(X"X)"'XxTy
El modelo estimado es ) R
Y =X
El vector de residuos del modelo estimado se define como

R=Y-Y=Y-Xj

Usando unicamente las condiciones del modelo:

~

EY] =X y E[]=X3

se obtiene que la media del vector de residuos es

Definir el concepto de funcién estimable y enunciar el Teorema de Gauss-
Markov.

Una funcién escalar de las componentes de 3, (), se dice que es estimable
si admite un estimador insesgado funcion lineal de las componentes de Y, o
equivalentemente:

Y(B) estimable <= Jc € R": E[c'Y] =¢(8), VB

El Teorema de Gauss-Markov afirma lo siguiente: toda funcién estimable, a” 3,
admite un unico estimador insesgado uniformemente de minima varianza en
la clase de estimadores lineales insesgados. Dicho estimador es

a3

donde (3 es el estimador de minimos cuadrados, y se denomina estimador de
minimos cuadrados de a’ 3.
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¢) Describir la hipétesis lineal general y bajo hipétesis de normalidad, dar el test
de razon de verosimilitudes de tamano o que permite resolver el contraste,
especificando detalladamente el estadistico de contraste.

La hipétesis de normalidad es Y ~» N, (X3, 0%I,). La hipdtesis lineal general
se expresa como Hy : O = 0, con Cjx, una matriz conocida de rango ¢ < k.
Si todas las componentes del vector C3 son estimables, entonces el test de
razon de verosimilitud, de tamano «, que resuelve el contraste

H()ZCﬂ:O
H106§é0

viene dado por
1 siF(Y)> Finra
0 si F(Y)< Fnra

donde
F(Y)=

n—r (Y =X - ||y - XB|?
q 1Y — X3]|]?
siendo @0 el estimador maximo verosimil de  bajo Hy. Si se desea resolver

el contraste sin establecer previamente el nivel de significacion con el que se
desea trabajar, se debe calcular:

_ X802 — |ly — X B2
p—valor = P[F,,_, > F.;,| siendo F.,, = n—r(ly A HAy Al
q ly — X B2
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Ejercicio 6 (1 punto). Se ha medido el nimero de particulas de 100 muestras radio-
activas en un intervalo de tiempo prefijado e igual a todas las muestras, obteniendo
los siguientes datos:

Numero de particulas ‘ o 1 2 3
Numero de muestras ‘29 25 20 14

4 5 6
8 3 1

Se pretende contrastar a nivel de significacién 0,05 si la distribucién de los datos se
corresponde con la de una Poisson.

En este caso, como la variable aleatoria es discreta, y tenemos frecuencias, es
més apropiado usar el test x? de Pearson. Sea

X = “Numero de particulas de una muestra”

El contraste a resolver es

{HO:Xw’P()\) oo

Vemos que la hipétesis nula es compuesta, luego primeramente debemos estimar el
valor del parametro A. Sabemos que el EMV de \ es la media muestral. Asi

I 0-29+1-254+2-204+3-14+4-8+5-3+6-1 :@:1,6
100 100
El constraste adaptado seria
Hy: X ~~P(1,6)
Hy: X 4 P(1,6)
Denotemos por Ny, ..., N, las frecuencias observadas en las k clases consideradas,

y por
pi=P(XeA), i=1,...,k

las probabilidades tedricas bajo Hy con el parametro A\ estimado por A
El estadistico de contraste viene dado por

k .
. (Ni — npi)?
XNy Ng) =y ————
N
Como el parametro se ha estimado a partir de los mismos datos, la distribucién
asintoética bajo Hy es

XNy, . Ng) ~m Xk —q— 1)

con ¢ = 1 el nimero de parametros estimados.
Por teoria, para poder aplicar el test hay que verificar que

7
= 6_176 1’6

Ef=np;>5 Vi=1,....k, n=100, p;=P[X =i '
2.
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Primero vamos tanteando.
1,6°

E; =100 - po = 100 - e—lﬁﬁ ~20,19>5
Ef =100 —16’1—6!1 ~ 32,30 > 5
E5 =100 —161’2—6'2 25,84 > 5
E; =100 —17615—6,3 13,78 > 5
E; =100 16121—?4 ~551>5
En este punto!, como .
Er =100 - el»ﬁlé—?S ~ 1,76 <5

debemos aqui agrupar los mayores o iguales que 5, es decir, no considerar Ef, y en
su lugar, considerar

4 4
Bl =nP(X>5)=n(l-P(X <5)=n-Y nPA(X=i)=n-) E~
=0 1=0
100 — (20,19 4 32,30 + 25,84 + 13,78 + 5,51) = 2,38 < 5

que sigue siendo menor estricto que 5, por lo que agrupamos la cola derecha a partir
del 4, y ahora si

3 4
E%, =nPy(X >4) =n—) E; =100- <Z Ef — EZ) = 100—(97,62—5,51) = 100—92,11 =
=0 =0
780> 5
Una particién seria la siguiente

A=1{i}, Ay={>4}, i=01,2,3

En este caso, k = 5 (ntmero de clases tras agrupar), luego x*(Ny, ..., Ni) ~ x?(3).
Las frecuencias observadas, denotadas por O;,7 =1,...,k, son

6
Op=No=29, O1=N; =25, Oy=Ny=20, O3=N3=14, Oy;=) N;=8+3+1=12
i=4
Las frecuencias esperadas son
Ey=FE;~2019 E, =FE}~3230, E,=FE;~2584 FE3=FE;~1378 FE;,=FE,~7289
Obtenemos
4
O; — E;)? 29 —20,19)% (25 —32,30)2 (20 — 25,84)% (14 — 13,78)2

P Y 22) S 2 2 2 )

— E; 20,19 32,30 25,84 13,78

(12 — 7,89)?
7,89

thay que particionar el espacio muestral de la Poisson, que es NU {0}, en grupos que verifiquen
las condiciones del test x? de Pearson, por eso las consideraciones siguientes.

~ 8,958
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El test asintdtico de tamano « es

QO(Xl,---,Xn) =

1 si Xz(le---aNk) >X%:71;a
0 siX*(Ny,...,Np) < X%—l;a

con
p — valor = Py, [{*(N1, ..., Nk) 2 X2, ®notoe PDC(k—q—1) = X2,

y szp el valor del estadistico obtenido con la muestra observada. Usando que
k —q — 1= 3, obtenemos

p — valor =~ P[x*(3) > 8,958] ~ 0,025

Como p — wvalor < a = 0,05, rechazamos Hy a nivel de significacién 0,05, por lo
que puede suponerse que la distribucion de los datos no se corresponde con la de
una Poisson.
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