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Inferencia Estad́ıstica. Examen I

Ejercicio 1 (1.9 puntos). Sea X una variable aleatoria con función de densidad:

fθ(x) =
x√

θ − 1
√
x2 − 1

, 1 < x ⩽
√
θ

se pide calcular, si existe, un UMVUE para la función paramétrica g(θ) = (θ − 1)−1,
y justificar detalladamente la no existencia del mismo cuando no exista.

Ejercicio 2 (2 puntos). Sea X una variable aleatoria con distribución en la familia
{Pθ : θ ∈ Θ} que se sabe que es regular y cuyas funciones de densidad vienen dadas
por:

fθ(x) = exp[k1 ln θ − k2xθ + S(x)], x > 0, θ, k1, k2 ∈ R+

sabiendo que V arθ(X) = (Eθ[X])2.

a) ¿Para qué valores de n se puede asegurar que cualquier estimador regular
insesgado en g(θ) = ln θ2 tiene varianza mayor o igual que 0,2 para cualquier
valor del parámetro θ?

b) Para n = 1, si U(X) es un estimador insesgado de g(θ) = ln θ2 regular, se pide
calcular la covarianza de U(X) y de X.

c) ¿Para qué valores de k1 y k2 existen funciones paramétricas con estimadores
eficientes?

Ejercicio 3 (1.85 puntos). Sea (X1, . . . , Xn) una muestra aleatoria simple de una
variable X ⇝ {Pθ : θ ∈ R} y S ≡ S(X1, . . . , Xn) un estimador de θ:

a) Si S − θ ⇝ N (0, σ2
0) ∀θ ∈ R. Partiendo de la función de verosimilitud de θ

asociada a una realización de S, calcular la función de verosimilitud asociada a
la función λ = θ2 − 1 y deducir a partir de ella el estimador máximo verośımil
de λ.

b) Si S−θ ⇝ t(n) ∀θ ∈ R. Encontrar el intervalo de confianza para θ de mı́nima
longitud esperada a nivel de confianza 1− α basado en S.

Ejercicio 4 (2 puntos). Sea X una variable aleatoria con función de densidad

fθ(x) =
3(x− 1)2

θ3
, 1 < x < θ + 1

se pide obtener el test más potente de tamaño α que permita resolver el contraste
H0 : θ = θ0, H1 : θ = θ1 donde θ1 < θ0.

Calcule la potencia de cada test. Para n = 2 y θ0 = 9, obtener el mayor valor de θ1
para que la potencia del test de Neyman-Pearson de tamaño 0,01 sea mayor o igual
que 0,64.
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Ejercicio 5 (1.25 puntos). Si se tiene un modelo lineal de Gauss-Markov Y =
Xβ + ε:

a) Si el modelo es de rango máximo, dar el estimador de mı́nimos cuadrados de
β y calcular la media del vector de residuos del modelo estimado, solo con las
condiciones iniciales del modelo.

b) Definir el concepto de función estimable y enunciar el Teorema de Gauss-
Markov.

c) Describir la hipótesis lineal general y bajo hipótesis de normalidad, dar el test
de razón de verosimilitudes de tamaño α que permite resolver el contraste,
especificando detalladamente el estad́ıstico de contraste.

Ejercicio 6 (1 punto). Se ha medido el número de particulas de 100 muestras radio-
activas en un intervalo de tiempo prefijado e igual a todas las muestras, obteniendo
los siguientes datos:

Número de part́ıculas 0 1 2 3 4 5 6
Número de muestras 29 25 20 14 8 3 1

Se pretende contrastar a nivel de significación 0,05 si la distribución de los datos se
corresponde con la de una Poisson.
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Solución.

Ejercicio 1 (1.9 puntos). Sea X una variable aleatoria con función de densidad:

fθ(x) =
x√

θ − 1
√
x2 − 1

, 1 < x ⩽
√
θ

se pide calcular, si existe, un UMVUE para la función paramétrica g(θ) = (θ − 1)−1,
y justificar detalladamente la no existencia del mismo cuando no exista.

Buscamos obtener el UMVUE mediante el método alternativo visto en teoŕıa.
Para ello, en primer lugar hay que encontrar un estad́ıstico suficiente y comple-

to T , y luego una función del estad́ıstico h(T ) (denotaremos indistintamente T
not≡

T (X1, . . . , Xn), para una m.a.s. (X1, . . . , Xn) con n ∈ N fijo) insesgada en g(θ) =
(θ − 1)−1, estimadora y con momento de segundo orden finito. Entonces h(T ) será
el UMVUE.

El estad́ıstico suficiente se calcula por medio del Teorema de Factorización de
Neyman-Fisher. La función conjunta es la siguiente

fn
θ (x1, . . . , xn)

indep.
=

n∏
i=1

fθ(xi)

Suponemos en este punto que x(1) > 1 (de lo contrario, fθ(xi) = 0 ∀i = 1, . . . , n),
y vemos que

xi ⩽
√
θ ∀i = 1, . . . , n ⇐⇒ IR−

0
(xi−

√
θ) = 1 ∀i = 1, . . . , n ⇐⇒ IR−

0
(x(n)−

√
θ) = 1

de donde se deduce que

fn
θ (x1, . . . , xn) =

n∏
i=1

xi√
θ − 1

√
x2i − 1

IR−
0
(x(n)−

√
θ) = (θ−1)−n/2

n∏
i=1

xi√
x2i − 1

IR−
0
(x(n)−

√
θ)

Tomando T (X1, . . . , Xn) = X(n) y

h(x1, . . . , xn) =
n∏

i=1

xi√
x2i − 1

, gθ(t) = (θ − 1)−n/2IR−
0
(t−

√
θ)

Se cumple que

fn
θ (x1, . . . , xn) = h(x1, . . . , xn)gθ(T (x1, . . . , xn)) ∀(x1, . . . , xn) ∈ X n

donde h es independiente del parámetro θ y gθ depende de la muestra solo a través del
estad́ıstico, luego, por el Teorema de Factorización de Neyman-Fisher, el estad́ıstico
T es suficiente.
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Ahora, hay que comprobar que este estad́ıstico es completo, lo cual se hará por
definición. Sabemos por teoŕıa que la distribución del máximo es

FT (t) = (FX(t))
n =⇒ fT (t) = n(FX(t))

n−1fθ(t)

Hallamos ahora la función de distribución de X:

FX(t) =

∫ t

1

fθ(x)dx =

∫ t

1

x√
θ − 1

√
x2 − 1

dx =
1√
θ − 1

∫ t

1

x√
x2 − 1

dx =
1√
θ − 1

·
[√

x2 − 1
]t
1
=

√
t2 − 1√
θ − 1

1 < t ⩽
√
θ

La función de densidad del estad́ıstico será entonces

fT (t) = n(FX(t))
n−1fθ(t) = n

(√
t2 − 1√
θ − 1

)n−1
t√

θ − 1
√
t2 − 1

=

(
√
t2 − 1)n−1

(
√
θ − 1)n−1

nt√
θ − 1

√
t2 − 1

=
nt(

√
t2 − 1)n−2

(
√
θ − 1)n

1 < t ⩽
√
θ

Sea h una función medible verificando

0 = E[h(T )]
def
=

∫ √
θ

1

h(t)fT (t)dt =

∫ √
θ

1

h(t)
nt(

√
t2 − 1)n−2

(
√
θ − 1)n

dt =

n

(
√
θ − 1)n

∫ √
θ

1

h(t)t(
√
t2 − 1)n−2dt

como
n

(
√
θ − 1)n

̸= 0 ∀n ∈ N, ∀θ > 1, debe ser

∫ √
θ

1

h(t)t(
√
t2 − 1)n−2dt = 0

Por el Teorema Fundamental del Cálculo, podemos considerar una primitivaH(t) del
integrando h(t)t(

√
t2 − 1)n−2, y esta cumple, por la Regla de Barrow, que H(

√
θ)−

H(1) = 0 ∀θ > 1. Derivando respecto de θ, se obtiene que

d

dθ
H(

√
θ) = 0 ⇐⇒ h(

√
θ)
√
θ(
√
θ − 1)n−2 1

2
√
θ
= 0

θ>1⇐⇒

1

2
h(
√
θ)(

√
θ − 1)n−2 = 0

(∗)⇐⇒ h(
√
θ) = 0

donde en (∗) se ha usado que (
√
θ − 1)n−2/2 ̸= 0 por ser θ > 1. Equivalentemente,

∀θ ∈ Θ = ]1,+∞[ h(
√
θ) = 0 ⇐⇒ h(t) = 0 ∀t > 1

(tomando t =
√
θ ∈ ]1,+∞[). Por tanto

]1,+∞[ ⊆ {t : h(t) = 0}

y consecuentemente

1 ⩾ P [h(T ) = 0] ⩾ P [T > 1] = 1 =⇒ P [h(T ) = 0] = 1

y entonces por definición concluimos que T es un estad́ıstico completo. Tenemos
entonces en este punto que T es un estad́ıstico suficiente y completo.
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Ahora hay que buscar un estimador insesgado en g(θ) y de segundo orden finito.
Sea h (independiente de la anterior) función medible tal que

(θ − 1)−1 = g(θ) = E[h(T )] =
n

(
√
θ − 1)n

∫ √
θ

1

h(t)t(
√
t2 − 1)n−2dt ⇐⇒

∫ √
θ

1

h(t)t(
√
t2 − 1)n−2dt =

(
√
θ − 1)n

n
(θ − 1)−1 =

(θ − 1)
n
2
−1

n

Derivamos respecto de θ a ambos lados e igualamos. El miembro izquierdo ya lo
tenemos por el apartado anterior:

1

2
h(
√
θ)(

√
θ − 1)n−2

y el derecho es

1

n

(n
2
− 1
)
(θ − 1)

n
2
−2 =

(
1

2
− 1

n

)
(θ − 1)

n
2
−2 =

n− 2

2n
(θ − 1)

n
2
−2

Despejamos h(
√
θ):

1

2
h(
√
θ)(

√
θ − 1)n−2 =

n− 2

2n
(θ − 1)

n
2
−2 ⇐⇒

h(
√
θ) =

n− 2

n

(θ − 1)
n
2
−2

(
√
θ − 1)n−2

=
n− 2

n

(θ − 1)
n
2
−2

(θ − 1)(n−2)/2
=
n− 2

n

1

θ − 1

de donde

h(t) =
n− 2

n

1

t2 − 1

Por construcción h(T ) es insesgada en g(θ). Vemos que h(T ) también es estimador
de g(θ), pues Θ = ]1,+∞[, y g(θ) = 1

θ−1
=⇒ g(Θ) = ]0,+∞[. Como T = X(n) > 1,

entonces T 2− 1 > 0, y n−2
n
> 0 si n ⩾ 3, luego h(T ) > 0 si n ⩾ 3. Queda comprobar

que tiene momento de segundo orden finito.

Ello se cumplirá en caso de que E[h(T )2] < +∞:

E[h(T )2]
def
=

∫ √
θ

1

h(t)2fT (t)dt =

∫ √
θ

1

(
n− 2

n

)2
1

(t2 − 1)2
nt(

√
t2 − 1)n−2

(
√
θ − 1)n

dt =

(n− 2)2

n(θ − 1)n/2

∫ √
θ

1

t(t2 − 1)(n−6)/2dt =
(n− 2)2

n(θ − 1)n/2
1

(n− 4)

[
(t2 − 1)(n−4)/2

]√θ

1
=

(n− 2)2

n(n− 4)

(θ − 1)(n−4)/2

(θ − 1)n/2
=

(n− 2)2

n(n− 4)

1

(θ − 1)2

Y vemos que E[h(T )2] < +∞ ⇐⇒ n > 4, ya que si n ⩽ 4, el momento de segun-
do orden no es finito. Por tanto, por el Teorema de Lehmann-Scheffé, E[h(T )/T ] =
h(T ) es el UMVUE para g(θ), y existe siempre y cuando n > 4 ⇐⇒ n ⩾ 5.
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Ejercicio 2 (2 puntos). Sea X una variable aleatoria con distribución en la familia
{Pθ : θ ∈ Θ} que se sabe que es regular y cuyas funciones de densidad vienen dadas
por:

fθ(x) = exp[k1 ln θ − k2xθ + S(x)], x > 0, θ, k1, k2 ∈ R+

sabiendo que V arθ(X) = (Eθ[X])2.

a) ¿Para qué valores de n se puede asegurar que cualquier estimador regular in-
sesgado en g(θ) = ln θ2 tiene varianza mayor o igual que 0,2 para cualquier
valor del parámetro θ?

Nos piden calcular la cota de Frechét-Crámer-Rao, definida para cualquier
estimador regular, insesgado en g(θ) y, suponemos, de segundo orden, T , como
sigue:

Var(T (X1, . . . , Xn)) ⩾
[g′(θ)]2

IX1,...,Xn(θ)

donde 0 < IX(θ) < +∞. Ya tenemos el numerador

g(θ) = ln(θ2) = 2 ln θ =⇒ g′(θ) =
2

θ
=⇒ [g′(θ)]2 =

4

θ2

Y por la aditividad de la función de información de Fisher, sabemos que
IX1,...,Xn(θ) = nIX(θ). Sacamos IX(θ).

Para usar la condición de regularidad, se obtiene

ln fθ(x) = k1 ln θ − k2xθ + S(x) =⇒ ∂ ln fθ(X)

∂θ
=
k1
θ

− k2x

Usando que la familia es regular

Eθ

[
∂ ln fθ(X)

∂θ

]
= 0 ⇐⇒ Eθ

[
k1
θ

− k2X

]
= 0 ⇐⇒ Eθ

[
k1
θ

]
−Eθ[k2X] = 0 ⇐⇒

k1
θ

= k2Eθ[X] ⇐⇒ Eθ[X] =
k1
k2θ

Sabemos por teoŕıa que

IX(θ) = Varθ

[
∂ ln fθ(X)

∂θ

]
y

Varθ

[
∂ ln fθ(X)

∂θ

]
= Varθ

[
k1
θ

− k2X

]
(∗)
= k22Varθ[X]

(∗∗)
= k22(Eθ[X])2 = k22

(
k1
k2θ

)2
k2>0
=

k21
θ2

donde en (∗) se ha usado que Var(aX + b) = a2Var(X) para todo a, b ∈ R, y
en (∗∗) que Varθ(X) = (Eθ[X])2 por hipótesis del enunciado.

Tenemos que 0 < IX(θ) = k21/θ2 < +∞, y la mı́nima varianza es entonces,
sabiendo que IX1,...,Xn(θ) = nIX(θ), la que sigue:
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[g′(θ)]2

IX1,...,Xn(θ)
=

[g′(θ)]2

nIX(θ)
=

4

θ2
θ2

nk21

θ>0
=

4

nk21

Imponemos que esta cota inferior sea mayor o igual que 0.2, y despejamos n:

4

nk21
⩾ 0.2 ⇐⇒ n ⩽

4

0.2k21
=

20

k21

Aśı, para todo n ∈ N con n ⩽ 20/k21, podemos asegurar que la varianza de
cualquier estimador regular insesgado en g(θ) = ln θ2 será mayor o igual que
0,2 para cualquier valor del parámetro θ.

b) Para n = 1, si U(X) es un estimador insesgado de g(θ) = ln θ2 regular, se pide
calcular la covarianza de U(X) y de X.

Por ser U(X) insesgado en g(θ), se tiene que

Eθ[U(X)] = g(θ) = ln(θ2) = 2 ln θ

Por ser U(X) regular, sabemos que se verifica la siguiente condición:

∂

∂θ
Eθ[U(X1, . . . , Xn)] = Eθ

[
U(X1, . . . , Xn)

∂ ln fn
θ (X1, . . . , Xn)

∂θ

]
en particular para n = 1

∂

∂θ
Eθ[U(X)] = Eθ

[
U(X)

∂ ln fθ(X)

∂θ

]
Podemos obtener el miembro izquierdo de la igualdad

∂

∂θ
Eθ[U(X)] =

∂

∂θ
(2 ln θ) =

2

θ

y el miembro derecho, usando lo ya calculado en el apartado anterior, es

Eθ

[
U(X)

∂ ln fθ(X)

∂θ

]
= Eθ

[
U(X)

(
k1
θ

− k2X

)]
=
k1
θ
Eθ[U(X)]−k2Eθ[U(X)X]

Juntando ambas cosas, podemos despejar el momento cruzado Eθ[U(X)X]:

2

θ
=
k1
θ
Eθ[U(X)]− k2Eθ[U(X)X] ⇐⇒ Eθ[U(X)X] =

2

θ
− k1

θ
Eθ[U(X)]

−k2
=

− 2

k2θ
+

k1
k2θ

Eθ[U(X)]

Ahora, por definición de covarianza

Covθ(U(X), X) = Eθ[U(X)X]− Eθ[U(X)]Eθ[X]

y sustituyendo y usando Eθ[X] obtenida en el apartado anterior:

Covθ(U(X), X) = − 2

k2θ
+

k1
k2θ

Eθ[U(X)]− Eθ[U(X)]
k1
k2θ

= − 2

k2θ
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c) ¿Para qué valores de k1 y k2 existen funciones paramétricas con estimadores
eficientes?

Buscamos aplicar el Teorema de Caracterización de Estimadores Eficientes.
Para ello, obtenemos la función conjunta de la m.a.s. de X

fn
θ (x1, . . . , xn)

indep
=

n∏
i=1

fθ(xi)

Se supondrá a partir de ahora que xi ∈ R+ ∀i = 1, . . . , n y θ ∈ R+. De lo
contrario, fθ(xi) = 0 ∀i = 1, . . . , n.

fn
θ (x1, . . . , xn)

indep
=

n∏
i=1

fθ(xi) =
n∏

i=1

e(k1 ln θ−k2xiθ+S(xi)) = e
∑n

i=1(k1 ln θ−k2xiθ+S(xi)) =

e(nk1 ln θ−k2θ
∑n

i=1 xi+
∑n

i=1 S(xi)) = exp

{
nk1 ln θ − k2θ

n∑
i=1

xi +
n∑

i=1

S(xi)

}

ln fn
θ (x1, . . . , xn) = nk1 ln θ − k2θ

n∑
i=1

xi +
n∑

i=1

S(xi)

∂ ln fn
θ (x1, . . . , xn)

∂θ
=
nk1
θ

− k2

(
n∑

i=1

xi

)
= −k2

(
n∑

i=1

xi −
nk1
k2θ

)

Ahora, supongamos que T (X1, . . . , Xn) es un estimador de g(θ) función pa-
ramétrica derivable y estrictamente monótona (g′(θ) ̸= 0 ∀θ ∈ Θ = R+).
Como el enunciado nos dice que la familia es regular, y 0 < IX(θ) = k21/θ2 <
+∞ ∀θ ∈ Θ, T es eficiente si y solo si ∀θ ∈ Θ ∃a(θ) ̸= 0 tal que

Pθ

[
∂ ln fn

θ (X1, . . . , Xn)

∂θ
= a(θ)[T (X1, . . . , Xn)− g(θ)]

]
= 1

y
I(X1,...,Xn)(θ) = a(θ)g′(θ)

Como
∂ ln fn

θ (X1, . . . , Xn)

∂θ
= a(θ)[T (X1, . . . , Xn)− g(θ)] ⇐⇒

−k2

(
n∑

i=1

Xi −
nk1
k2θ

)
= a(θ)[T (X1, . . . , Xn)− g(θ)]

claramente por comparación se obtiene que

T (X1, . . . , Xn) =
n∑

i=1

Xi, g(θ) =
nk1
k2θ

, a(θ) = −k2
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Es claro que T (X1, . . . , Xn) =
∑n

i=1Xi es un estimador, pues Θ = R+, g(Θ) =
R+, y T (x1, . . . , xn) > 0 ∀(x1, . . . , xn) ∈ X n = (R+)n. Además, tanto a(θ)
como g(θ) verifican todas las condiciones del teorema, pues

g′(θ) =
nk1
k2

· (θ−1)′ =
nk1
k2

· (−θ−2) = − nk1
k2θ2

< 0

porque n, k1, k2, θ > 0 y a(θ) = −k2 < 0, en particular, a(θ) ̸= 0 ∀θ ∈ Θ, y
usando la aditividad de la función de información de Fisher, obtenemos

n
k21
θ2

= nIX(θ) = I(X1,...,Xn)(θ) = a(θ)g′(θ) = −k2
(
− nk1
k2θ2

)
k2>0
=

nk1
θ2

Para que coincidan, necesariamente

n
k21
θ2

=
nk1
θ2

n,θ>0⇐⇒ k21 = k1 ⇐⇒ k1 ∈ {0, 1}

Sin embargo como el enunciado del problema nos dice que k1 ∈ R+ (además de
que para que T sea eficiente, debe ser 0 < IX(θ) = k21/θ2 < +∞ por definición,
por lo que también se descarta por esta v́ıa que k1 = 0), debe ser k1 = 1.
Por un corolario visto en teoŕıa, como T (X1, . . . , Xn) es un estimador eficien-
te para g(θ), con g′(θ) ̸= 0, sabemos que las únicas funciones paramétricas
que admiten estimadores eficientes son las de la forma ag(θ) + b y los corres-
pondientes estimadores eficientes son aT + b, con probabilidad 1, bajo todas
las distribuciones de la familia. Además, estos estimadores eficientes existen
únicamente en el caso en que (k1, k2) ∈ {1} × R+.
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Ejercicio 3 (1.85 puntos). Sea (X1, . . . , Xn) una muestra aleatoria simple de una
variable X ⇝ {Pθ : θ ∈ R} y S ≡ S(X1, . . . , Xn) un estimador de θ:

a) Si S − θ ⇝ N (0, σ2
0) ∀θ ∈ R. Partiendo de la función de verosimilitud de θ

asociada a una realización de S, calcular la función de verosimilitud asociada a
la función λ = θ2 − 1 y deducir a partir de ella el estimador máximo verośımil
de λ.

Para obtener la función de verosimilitud de θ asociada a una realización de S,
pongamos s, necesitamos la función de densidad de la normal, expresada en
términos de s:

fθ(s) =
1

σ0
√
2π

exp

{
−(s− θ)2

2σ2
0

}
Ahora, por definición, la función de verosimilitud es

Ls(θ) = fθ(s) ∀θ ∈ Θ = R

La función paramétrica que nos dan es λ = θ2 − 1 = g(θ), y despejando θ en
función de λ

λ = θ2 − 1 ⇐⇒ θ2 = λ+ 1 ⇐⇒ θ = ±
√
λ+ 1

es claro que el espacio paramétrico es Λ = [−1,+∞[. Nuevamente por defini-
ción, la función de verosimilitud asociada a la función paramétrica λ = g(θ) =
θ2 − 1 es

Ms(λ) = sup
θ∈g−1(λ)

Ls(θ) = máx{Ls(
√
λ+ 1), Ls(−

√
λ+ 1)}

Queremos ver si Ls(
√
λ+ 1) ⩾ Ls(−

√
λ+ 1) (podŕıamos haber tomado el otro

sentido de la desigualdad no estricta también), es decir, si Ls(
√
λ+ 1) nos da

la función de verosimilitud asociada a λ = g(θ). Para ello, tratamos de llegar
a una condición equivalente que sea sencilla de comprobar:

Ls(
√
λ+ 1) ⩾ Ls(−

√
λ+ 1) ⇐⇒

1

σ0
√
2π

exp

{
−(s−

√
λ+ 1)2

2σ2
0

}
⩾

1

σ0
√
2π

exp

{
−(s− (−

√
λ+ 1))2

2σ2
0

}
⇐⇒

exp

{
−(s−

√
λ+ 1)2

2σ2
0

}
⩾ exp

{
−(s+

√
λ+ 1)2

2σ2
0

}
(∗)⇐⇒

−(s−
√
λ+ 1)2

2σ2
0

⩾ −(s+
√
λ+ 1)2

2σ2
0

σ2
0>0
⇐⇒

(s−
√
λ+ 1)2 ⩽ (s+

√
λ+ 1)2 ⇐⇒

s2 − 2s
√
λ+ 1 + λ+ 1 ⩽ s2 + 2s

√
λ+ 1 + λ+ 1 ⇐⇒

−2s
√
λ+ 1 ⩽ 2s

√
λ+ 1 ⇐⇒ 0 ⩽ 4s

√
λ+ 1

√
λ+1⩾0⇐⇒ s ⩾ 0

13
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donde en (∗) se ha usado que la exponencial es estrictamente creciente. Dedu-
cimos entonces que

Ms(λ) =

{
Ls(

√
λ+ 1) si s ⩾ 0

Ls(−
√
λ+ 1) si s < 0

Ahora, hallamos el EMV por medio de las ecuaciones de verosimilitud, que
dependerán del caso en que nos encontremos.

a) Si s ⩾ 0, entonces Ms(λ) = Ls(
√
λ+ 1) y maximizamos

lnMs(λ) = ln

(
1

σ0
√
2π

)
− (s−

√
λ+ 1)2

2σ2
0

=⇒

∂ lnMs(λ)

∂λ
= − 1

2σ2
0

2(s−
√
λ+ 1)

(
− 1

2
√
λ+ 1

)
=
s−

√
λ+ 1

2σ2
0

√
λ+ 1

y

∂ lnMs(λ)

∂λ
= 0 ⇐⇒ s−

√
λ+ 1

2σ2
0

√
λ+ 1

= 0 ⇐⇒ s−
√
λ+ 1 = 0 ⇐⇒ s =

√
λ+ 1 ⇐⇒

λ̂ = s2 − 1

b) Si s < 0, entonces Ms(λ) = Ls(−
√
λ+ 1) y maximizamos

lnMs(λ) = ln

(
1

σ0
√
2π

)
− (s+

√
λ+ 1)2

2σ2
0

=⇒

∂ lnMs(λ)

∂λ
= − 1

2σ2
0

2(s+
√
λ+ 1)

(
1

2
√
λ+ 1

)
=
s+

√
λ+ 1

2σ2
0

√
λ+ 1

y

∂ lnMs(λ)

∂λ
= 0 ⇐⇒ s+

√
λ+ 1

2σ2
0

√
λ+ 1

= 0 ⇐⇒ s+
√
λ+ 1 = 0 ⇐⇒ s = −

√
λ+ 1 ⇐⇒

|s| s<0
= −s =

√
λ+ 1 ⇐⇒

λ̂ = s2 − 1

En resumen, el estimador máximo verośımil de λ es λ̂ = s2 − 1, para todo
λ ∈ Λ = [−1,+∞[.
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b) Si S−θ ⇝ t(n) ∀θ ∈ R. Encontrar el intervalo de confianza para θ de mı́nima
longitud esperada a nivel de confianza 1− α basado en S.

Como S − θ ⇝ t(n) ∀θ ∈ R, podemos considerar como función pivote, T :
X n ×Θ → R, dado por

T ≡ T (X1, . . . , Xn; θ) = S(X1, . . . , Xn)− θ ≡ S − θ

que es una variable aleatoria cuya distribución, t(n), es independiente del
parámetro θ (solo depende de n ∈ N). Además:

a) T es estrictamente monótona en θ, pues

∂T

∂θ
=

∂

∂θ
(S − θ) = −1 < 0, ∀θ ∈ Θ = R

b) T = λ tiene solución en θ, para todo λ ∈ Λ = R, con Λ la imagen de T ,
pues

T = λ ⇐⇒ S − θ = λ ⇐⇒ θ = S − λ ∈ R

Por un teorema visto en teoŕıa, sabemos que se puede construir un intervalo
de confianza para θ a cualquier nivel de confianza 1 − α, con 0 < α < 1. Por
el método de la cantidad pivotal, buscamos λ1 < λ2 verificando

Pθ(λ1 < T < λ2) = 1− α

Es decir,

λ1 < T < λ2 ⇐⇒ λ1 < S−θ < λ2 ⇐⇒ λ1−S < −θ < λ2−S ⇐⇒ S−λ2 < θ < S−λ1

y el intervalo tendrá longitud L = (S − λ1) − (S − λ2) = λ2 − λ1, que es
constante, luego coincidirá con la longitud esperada Eθ[L] = L ∀θ ∈ Θ.

Sea ahora F la función de distribución de la distribución t de Student t(n), y
sea f la correspondiente función de densidad. La restricción es

1− α = Pθ(λ1 < T < λ2) = F (λ2)− F (λ1)

Minimizamos λ2 − λ1 con el método de los multiplicadores de Lagrange visto
en teoŕıa

H(λ1, λ2) = λ2 − λ1 − λ[F (λ2)− F (λ1)− (1− α)]

y buscamos aquellos λ1, λ2 que minimicen H(λ1, λ2), luego obtenemos sus de-
rivadas parciales

∂H

∂λ1
= −1 + λf(λ1)

∂H

∂λ2
= 1− λf(λ2)

Ahora, igualamos ambas parciales a 0 y despejamos λ:

0 =
∂H

∂λ1
= −1 + λf(λ1)

0 =
∂H

∂λ2
= 1− λf(λ2)

 =⇒

λ =
1

f(λ1)

λ =
1

f(λ2)

 =⇒ f(λ1) = f(λ2)

15
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Como la distribución t de Student tiene las mismas propiedades de simetŕıa con
respecto al origen que la N (0, 1), las únicas posibilidades son o bien λ1 = λ2 o
bien λ1 = −λ2. La primera de las dos opciones se descarta ya que no verifica
la restricción (F (λ2)−F (λ1) = 0 ̸= 1−α), por lo que tiene que ser λ1 = −λ2.
Teniendo nuevamente en cuenta la restricción F (λ2) − F (λ1) = 1 − α, estos
quedan determinados por:

λ2 = tn;α/2, λ1 = −λ2 = −tn;α/2

siendo P [T > tn;α/2] = α/2 y T ⇝ t(n). En conclusión, el intervalo de confianza
para θ de mı́nima longitud esperada a nivel de confianza 1 − α basado en S
es:

]S − λ2, S − λ1[ =
]
S − tn;α/2, S + tn;α/2

[
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Ejercicio 4 (2 puntos). Sea X una variable aleatoria con función de densidad

fθ(x) =
3(x− 1)2

θ3
, 1 < x < θ + 1

se pide obtener el test más potente de tamaño α que permita resolver el contraste
H0 : θ = θ0, H1 : θ = θ1 donde θ1 < θ0.

Calcule la potencia de cada test. Para n = 2 y θ0 = 9, obtener el mayor valor de θ1
para que la potencia del test de Neyman-Pearson de tamaño 0,01 sea mayor o igual
que 0,64.

Tenemos un contraste de hipótesis simple frente a hipótesis simple, por lo que
sabemos por el Lema de Neyman-Pearson que el Test de Neyman-Pearson será el
más potente de tamaño α, de la forma

φ(X1, . . . , Xn) =


1 si λ(X1, . . . , Xn) > k

γ si λ(X1, . . . , Xn) = k

0 si λ(X1, . . . , Xn) < k

para ciertos γ ∈ [0, 1], k ∈ R y

λ(X1, . . . , Xn) =
fn
1 (X1, . . . , Xn)

fn
0 (X1, . . . , Xn)

Definimos el espacio muestral y el espacio paramétrico, en ambos casos depen-
diente del parámetro θ. Si estamos en H0, entonces X0 = ]1, θ0 + 1[, y Θ0 = {θ0}.
Análogamente, si estamos en H1, entonces X1 = ]1, θ1 + 1[, y Θ1 = {θ1}. Tenemos
entonces que

Θ = Θ0 ∪Θ1 = {θ0, θ1}
y como θ1 < θ0 ⇐⇒ θ1 + 1 < θ0 + 1, entonces ]1, θ1 + 1[ ⊂ ]1, θ0 + 1[ y

X = X0 ∪ X1 = ]1, θ0 + 1[ ∪ ]1, θ1 + 1[ = ]1, θ0 + 1[

Consecuentemente

X n = {(x1, . . . , xn) ∈ Rn : 1 < xi < θ0 + 1 ∀i = 1, . . . , n} =

{(x1, . . . , xn) ∈ Rn : 1 < x(1) ∧ x(n) < θ0 + 1}
Podemos considerar entonces (x1, . . . , xn) ∈ X n, y obtener la función conjunta

fn
θ (x1, . . . , xn), que es

fn
θ (x1, . . . , xn)

indep.
=

n∏
i=1

3(xi − 1)2

θ3

Y vemos que
x < θ + 1 ⇐⇒ IR−(x− (θ + 1)) = 1

luego

xi < θ + 1 ∀i = 1, . . . , n ⇐⇒ x(n) < θ + 1 ⇐⇒ IR−(x(n) − (θ + 1)) = 1

17
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Por tanto

fn
θ (x1, . . . , xn) =

n∏
i=1

3(xi − 1)2

θ3
IR−(x(n) − (θ + 1)) =

(
3

θ3

)n n∏
i=1

(xi − 1)2IR−(x(n) − (θ + 1)) =
3n

θ3n

n∏
i=1

(xi − 1)2IR−(x(n) − (θ + 1))

Se tiene entonces que

fn
0 (x1, . . . , xn) =

3n

θ3n0

n∏
i=1

(xi−1)2IR−(x(n)−(θ0+1)) =
3n

θ3n0

n∏
i=1

(xi−1)2 ∀(x1, . . . , xn) ∈ X n

fn
1 (x1, . . . , xn) =

3n

θ3n1

n∏
i=1

(xi − 1)2IR−(x(n) − (θ1 + 1)) ∀(x1, . . . , xn) ∈ X n

y podemos obtener λ(x1, . . . , xn), con (x1, . . . , xn) ∈ X n:

λ(x1, . . . , xn) =
fn
1 (x1, . . . , xn)

fn
0 (x1, . . . , xn)

=

3n

θ3n1
3n

θ3n0

n∏
i=1

(xi − 1)2IR−(x(n) − (θ1 + 1))

n∏
i=1

(xi − 1)2
=


3n

θ3n1

n∏
i=1

(xi − 1)2 si x(n) < θ1 + 1

0 si x(n) ⩾ θ1 + 1

3n

θ3n0

n∏
i=1

(xi − 1)2

Ahora, si x(n) < θ1 + 1, simplificamos

3n

θ3n1
3n

θ3n0

((((((((∏n
i=1(Xi − 1)2

((((((((∏n
i=1(Xi − 1)2

=
��3nθ3n0
��3nθ3n1

=

(
θ0
θ1

)3n

de donde

λ(x1, . . . , xn) =
fn
1 (x1, . . . , xn)

fn
0 (x1, . . . , xn)

=


(
θ0
θ1

)3n

si x(n) < θ1 + 1

0 si x(n) ⩾ θ1 + 1

∀(x1, . . . , xn) ∈ X n

Gráficamente, como θ1 < θ0:

θ1 < θ0

θ1 + 1 θ0 + 1
X(n)

f1 = 0

f1 > 0

f0 > 0

f0 = 0

18
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La semirrecta en que f0 = 0, que se corresponde con la condición x(n) ⩾ θ0+1, no
nos interesa ya que (x1, . . . , xn) /∈ X n. Gráficamente, la situación en la que estamos
es la siguiente:

X(n)

λ

θ1 + 1 θ0 + 1

(
θ0
θ1

)3n

1

Tenemos que k ∈

{
0,

(
θ0
θ1

)3n
}
, luego distinguimos entre estos dos casos.

Si k = 0 , entonces el test será:

φ(X1, . . . , Xn) =


1 si λ(X1, . . . , Xn) > k ⇐⇒ X(n) < θ1 + 1

γ si λ(X1, . . . , Xn) = k ⇐⇒ X(n) ⩾ θ1 + 1

0 si λ(X1, . . . , Xn) < k nunca

es decir:

φ(X1, . . . , Xn) =

{
1 si X(n) < θ1 + 1

γ si X(n) ⩾ θ1 + 1

Determinamos γ imponiendo tamaño α:

α
def
= sup

θ∈Θ0

βφ(θ) = sup
θ∈Θ0

Eθ[φ(X1, . . . , Xn)] = Eθ0 [φ(X1, . . . , Xn)] =

1 · Pθ0 [X(n) < θ1 + 1] + γPθ0 [X(n) ⩾ θ1 + 1]

Para calcular las probabilidades, obtenemos la función de distribución FX(t):

FX(t)
def
=

∫ t

1

3(x− 1)2

θ3
dt =

3

θ3

∫ t

1

(x−1)2dt =
3

θ3

[
(x− 1)3

3

]t
1

=
(t− 1)3

θ3
=

(
t− 1

θ

)3

Sabemos por teoŕıa que, para T = X(n), la distribución del máximo verifica

Pθ[T < t] = FT (t) = (FX(t))
n =

(
t− 1

θ

)3n

Por lo tanto,

Pθ0 [T < θ1 + 1] =

(
θ1
θ0

)3n

y
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Pθ0 [T ⩾ θ1 + 1] = 1− Pθ0 [T < θ1 + 1] = 1−
(
θ1
θ0

)3n

de donde

α = 1 ·Pθ0 [X(n) < θ1 +1]+ γPθ0 [X(n) ⩾ θ1 +1] =

(
θ1
θ0

)3n

+ γ

(
1−

(
θ1
θ0

)3n
)

⇐⇒

0 ⩽ γ =

α−
(
θ1
θ0

)3n

1−
(
θ1
θ0

)3n ⩽ 1 ⇐⇒ α ⩾

(
θ1
θ0

)3n

y el test resultante es:

φ(X1, . . . , Xn) =



1 si X(n) < θ1 + 1

α−
(
θ1
θ0

)3n

1−
(
θ1
θ0

)3n si X(n) ⩾ θ1 + 1

con potencia (en Θ1 = {θ1}):

βφ(θ1) = Eθ1 [φ(X1, . . . , Xn)] = Pθ1 [T < θ1 + 1] +

α−
(
θ1
θ0

)3n

1−
(
θ1
θ0

)3n Pθ1 [T ⩾ θ1 + 1]

Como Pθ1 [T < θ1 + 1] = 1 y Pθ1 [T ⩾ θ1 + 1] = 1− Pθ1 [T < θ1 + 1] = 1− 1 = 0,
entonces

βφ(θ1) = 1
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Si k =

(
θ0
θ1

)3n

, el test será, mirando nuevamente la misma gráfica

X(n)

λ

θ1 + 1 θ0 + 1

(
θ0
θ1

)3n

1

el que sigue:

φ(X1, . . . , Xn) =


1 si λ(X1, . . . , Xn) > k nunca

γ si λ(X1, . . . , Xn) = k ⇐⇒ X(n) < θ1 + 1

0 si λ(X1, . . . , Xn) < k ⇐⇒ X(n) ⩾ θ1 + 1

es decir:

φ(X1, . . . , Xn) =

{
γ si X(n) < θ1 + 1

0 si X(n) ⩾ θ1 + 1

Determinamos γ igual que antes imponiendo tamaño α:

α
def
= sup

θ∈Θ0

βφ(θ) = sup
θ∈Θ0

Eθ[φ(X1, . . . , Xn)] = Eθ0 [φ(X1, . . . , Xn)] =

γ · Pθ0 [X(n) < θ1 + 1] + 0 · Pθ0 [X(n) ⩾ θ1 + 1] = γ · Pθ0 [X(n) < θ1 + 1]

Ya sabemos del caso anterior que

Pθ0 [T < θ1 + 1] =

(
θ1
θ0

)3n

luego

α = γ · Pθ0 [X(n) < θ1 + 1] = γ

(
θ1
θ0

)3n

⇐⇒

0 ⩽ γ =
α(
θ1
θ0

)3n = α

(
θ0
θ1

)3n

⩽ 1 ⇐⇒ α ⩽

(
θ1
θ0

)3n

y el test resultante es:

φ(X1, . . . , Xn) =

α
(
θ0
θ1

)3n

si X(n) < θ1 + 1

0 si X(n) ⩾ θ1 + 1
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con potencia (en Θ1 = {θ1}):

βφ(θ1) = Eθ1 [φ(X1, . . . , Xn)] = α

(
θ0
θ1

)3n

· Pθ1 [T < θ1 + 1] + 0 · Pθ1 [T ⩾ θ1 + 1] =

α

(
θ0
θ1

)3n

· Pθ1 [T < θ1 + 1]

Igual que en el caso anterior Pθ1 [T < θ1 + 1] = 1, luego

βφ(θ1) = α

(
θ0
θ1

)3n

Lo último que pide el ejercicio es: para n = 2 y θ0 = 9, obtener el mayor valor
de θ1 para que la potencia del test de Neyman-Pearson de tamaño 0,01 sea mayor o
igual que 0,64. Distinguimos nuevamente entre los dos posibles valores de k:

Si k = 0 , hemos visto que el test más potente para tamaños α ⩾

(
θ1
θ0

)3n

es

φ(X1, . . . , Xn) =



1 si X(n) < θ1 + 1

α−
(
θ1
θ0

)3n

1−
(
θ1
θ0

)3n si X(n) ⩾ θ1 + 1

y la potencia es
βφ(θ1) = 1

En particular si n = 2, θ0 = 9 y α = 0,01, imponemos

0,01 = α ⩾

(
θ1
θ0

)3n

=

(
θ1
9

)6

=
θ61
96

⇐⇒ θ61 ⩽ 0,01·96 = 5314, 41 ⇐⇒ θ1 ⩽
6
√

5314, 41 ≈ 4,177

Por tanto, como la potencia siempre es 1 (> 0, 64), el mayor valor seŕıa simple-
mente el mayor valor que verifica la restricción del tamaño, que es θ1 ≈ 4,177.

Si k =

(
θ0
θ1

)3n

, hemos visto que el test más potente para tamaños α ⩽

(
θ1
θ0

)3n

es

φ(X1, . . . , Xn) =

α
(
θ0
θ1

)3n

si X(n) < θ1 + 1

0 si X(n) ⩾ θ1 + 1

y la potencia es

βφ(θ1) = α

(
θ0
θ1

)3n

En particular si n = 2, θ0 = 9 y α = 0,01, imponemos
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0,01 = α ⩽

(
θ1
θ0

)3n

=

(
θ1
9

)6

=
θ61
96

⇐⇒ θ61 ⩾ 0,01·96 = 5314, 41 ⇐⇒ θ1 ⩾
6
√

5314, 41 ≈ 4,177

e imponemos la restricción sobre la potencia

βφ(θ1) ⩾ 0, 64 ⇐⇒ 5314, 41

θ61
= 0, 01

(
9

θ1

)6

= α

(
θ0
θ1

)3n

⩾ 0, 64 ⇐⇒

θ1 ⩽
6

√
5314, 41

0, 64
= 4, 5

Combinando ambas restricciones, obtenemos

4,177 ⩽ θ1 ⩽ 4, 5

Y concluimos entonces que el mayor valor de θ1 será θ1 = 4, 5.
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Ejercicio 5 (1.25 puntos). Si se tiene un modelo lineal de Gauss-Markov Y =
Xβ + ε:

a) Si el modelo es de rango máximo, dar el estimador de mı́nimos cuadrados de
β y calcular la media del vector de residuos del modelo estimado, solo con las
condiciones iniciales del modelo.

El estimador de mı́nimos cuadrados del vector de efectos β es único (la exis-
tencia siempre está garantizada sin necesidad de suponer que el modelo sea
de rango máximo, y la unicidad está asegurada por ser el modelo de rango
máximo) y viene dado por

β̂ = (XTX)−1XTY

El modelo estimado es
Ŷ = Xβ̂

El vector de residuos del modelo estimado se define como

R = Y − Ŷ = Y −Xβ̂

Usando únicamente las condiciones del modelo:

E[Y ] = Xβ y E[Ŷ ] = Xβ

se obtiene que la media del vector de residuos es

E[R] = E[Y − Ŷ ] = E[Y ]− E[Ŷ ] = 0

b) Definir el concepto de función estimable y enunciar el Teorema de Gauss-
Markov.

Una función escalar de las componentes de β, ψ(β), se dice que es estimable
si admite un estimador insesgado función lineal de las componentes de Y , o
equivalentemente:

ψ(β) estimable ⇐⇒ ∃c ∈ Rn : E[cTY ] = ψ(β), ∀β

El Teorema de Gauss-Markov afirma lo siguiente: toda función estimable, aTβ,
admite un único estimador insesgado uniformemente de mı́nima varianza en
la clase de estimadores lineales insesgados. Dicho estimador es

aT β̂

donde β̂ es el estimador de mı́nimos cuadrados, y se denomina estimador de
mı́nimos cuadrados de aTβ.
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c) Describir la hipótesis lineal general y bajo hipótesis de normalidad, dar el test
de razón de verosimilitudes de tamaño α que permite resolver el contraste,
especificando detalladamente el estad́ıstico de contraste.

La hipótesis de normalidad es Y ⇝ Nn(Xβ, σ
2In). La hipótesis lineal general

se expresa como H0 : Cβ = 0, con Cq×k una matriz conocida de rango q ⩽ k.
Si todas las componentes del vector Cβ son estimables, entonces el test de
razón de verosimilitud, de tamaño α, que resuelve el contraste{

H0 : Cβ = 0

H1 : Cβ ̸= 0

viene dado por

φ(Y ) =

{
1 si F (Y ) > Fq,n−r;α

0 si F (Y ) ⩽ Fq,n−r;α

donde

F (Y ) =
n− r

q

(
∥Y −Xβ̂0∥2 − ∥Y −Xβ̂∥2

∥Y −Xβ̂∥2

)
siendo β̂0 el estimador máximo verośımil de β bajo H0. Si se desea resolver
el contraste sin establecer previamente el nivel de significación con el que se
desea trabajar, se debe calcular:

p−valor = P [Fq,n−r > Fexp] siendo Fexp =
n− r

q

(
∥y −Xβ̂0∥2 − ∥y −Xβ̂∥2

∥y −Xβ̂∥2

)
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Ejercicio 6 (1 punto). Se ha medido el número de particulas de 100 muestras radio-
activas en un intervalo de tiempo prefijado e igual a todas las muestras, obteniendo
los siguientes datos:

Número de part́ıculas 0 1 2 3 4 5 6
Número de muestras 29 25 20 14 8 3 1

Se pretende contrastar a nivel de significación 0,05 si la distribución de los datos se
corresponde con la de una Poisson.

En este caso, como la variable aleatoria es discreta, y tenemos frecuencias, es
más apropiado usar el test χ2 de Pearson. Sea

X ≡ “Número de part́ıculas de una muestra”

El contraste a resolver es {
H0 : X ⇝ P(λ)

H1 : X ̸⇝ P(λ)
λ > 0

Vemos que la hipótesis nula es compuesta, luego primeramente debemos estimar el
valor del parámetro λ. Sabemos que el EMV de λ es la media muestral. Aśı

λ̂ = X =
0 · 29 + 1 · 25 + 2 · 20 + 3 · 14 + 4 · 8 + 5 · 3 + 6 · 1

100
=

160

100
= 1,6

El constraste adaptado seŕıa {
H0 : X ⇝ P(1,6)

H1 : X ̸⇝ P(1,6)

Denotemos por N1, . . . , Nk las frecuencias observadas en las k clases consideradas,
y por

p̂i = Pλ̂(X ∈ Ai), i = 1, . . . , k

las probabilidades teóricas bajo H0 con el parámetro λ estimado por λ̂.

El estad́ıstico de contraste viene dado por

χ̂(N1, . . . , Nk) =
k∑

i=1

(Ni − np̂i)
2

np̂i

Como el parámetro se ha estimado a partir de los mismos datos, la distribución
asintótica bajo H0 es

χ̂(N1, . . . , Nk)⇝H0 χ
2(k − q − 1)

con q = 1 el número de parámetros estimados.
Por teoŕıa, para poder aplicar el test hay que verificar que

E∗
i = np̂i ⩾ 5 ∀i = 1, . . . , k, n = 100, p̂i = P [X = i] = e−1,61,6

i

i!
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Primero vamos tanteando.

E∗
0 = 100 · p̂0 = 100 · e−1,61,6

0

0!
≈ 20,19 ⩾ 5

E∗
1 = 100 · e−1,61,6

1

1!
≈ 32,30 ⩾ 5

E∗
2 = 100 · e−1,61,6

2

2!
≈ 25,84 ⩾ 5

E∗
3 = 100 · e−1,61,6

3

3!
≈ 13,78 ⩾ 5

E∗
4 = 100 · e−1,61,6

4

4!
≈ 5,51 ⩾ 5

En este punto1, como

E∗
5 = 100 · e−1,61,6

5

5!
≈ 1,76 < 5

debemos aqúı agrupar los mayores o iguales que 5, es decir, no considerar E∗
5 , y en

su lugar, considerar

E∗
⩾5 = nPλ̂(X ⩾ 5) = n(1− Pλ̂(X < 5)) = n−

4∑
i=0

nPλ̂(X = i) = n−
4∑

i=0

E∗
i ≈

100− (20,19 + 32,30 + 25,84 + 13,78 + 5,51) = 2,38 < 5

que sigue siendo menor estricto que 5, por lo que agrupamos la cola derecha a partir
del 4, y ahora śı

E∗
⩾4 = nPλ̂(X ⩾ 4) = n−

3∑
i=0

E∗
i = 100−

(
4∑

i=0

E∗
i − E∗

4

)
= 100−(97,62−5,51) = 100−92,11 =

7,89 ⩾ 5

Una partición seŕıa la siguiente

Ai = {i}, A4 = {⩾ 4}, i = 0, 1, 2, 3

En este caso, k = 5 (número de clases tras agrupar), luego χ̂2(N1, . . . , Nk)⇝ χ2(3).
Las frecuencias observadas, denotadas por Oi, i = 1, . . . , k, son

O0 = N0 = 29, O1 = N1 = 25, O2 = N2 = 20, O3 = N3 = 14, O4 =
6∑

i=4

Ni = 8+3+1 = 12

Las frecuencias esperadas son

E0 = E∗
0 ≈ 20,19 E1 = E∗

1 ≈ 32,30, E2 = E∗
2 ≈ 25,84 E3 = E∗

3 ≈ 13,78 E4 = E∗
⩾4 ≈ 7,89

Obtenemos

χ2
exp =

4∑
i=0

(Oi − Ei)
2

Ei

=
(29− 20,19)2

20,19
+
(25− 32,30)2

32,30
+
(20− 25,84)2

25,84
+
(14− 13,78)2

13,78
+

(12− 7,89)2

7,89
≈ 8,958

1hay que particionar el espacio muestral de la Poisson, que es N∪{0}, en grupos que verifiquen
las condiciones del test χ2 de Pearson, por eso las consideraciones siguientes.
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El test asintótico de tamaño α es

φ(X1, . . . , Xn) =

{
1 si χ̂2(N1, . . . , Nk) ⩾ χ2

k−1;α

0 si χ̂2(N1, . . . , Nk) < χ2
k−1;α

con

p− valor = PH0 [χ̂
2(N1, . . . , Nk) ⩾ χ2

exp] ≈n→+∞ P [χ2(k − q − 1) ⩾ χ2
exp]

y χ2
exp el valor del estad́ıstico obtenido con la muestra observada. Usando que

k − q − 1 = 3, obtenemos

p− valor ≈ P [χ2(3) ⩾ 8,958] ≈ 0, 025

Como p− valor ⩽ α = 0,05, rechazamos H0 a nivel de significación 0,05, por lo
que puede suponerse que la distribución de los datos no se corresponde con la de
una Poisson.
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